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NUMERICAL SOLUTION OF A FAST DIFFUSION EQUATION 

MARIE-NOELLE LE ROUX AND PAUL-EMILE MAINGE 

ABSTRACT. In this paper, the authors consider the first boundary value prob- 
lem for the nonlinear reaction diffusion equation: ut - Aum = auP1 in Q, a 
smooth bounded domain in IRd(d > 1) with the zero lateral boundary condi- 
tion and with a positive initial condition, m E ]0, 1[ (fast diffusion problem), 
a > 0 and P1 > m. Sufficient conditions on the initial data are obtained 
for the solution to vanish or become infinite in a finite time. A scheme for 
the discretization in time of this problem is proposed. The numerical scheme 
preserves the essential properties of the initial problem; namely existence of 
an extinction or a blow-up time, for which estimates have been obtained. The 
convergence of the method is also proved. 

1. INTRODUCTION 

In this paper, a numerical scheme is proposed to solve the reaction diffusion 
problem: find a nonnegative function u defined on Q, a smooth domain Rd(d > 1) 
and such that 

Ut -um = auPi x E Q,t > 0 
(1.1) u(t,x) = 0 x E _Q, t > O 

u(0,x) = uo(x) > 0 x E Q, 

where m E ]0, 1[ (fast diffusion problem), a > 0 and P1 > m. 
This problem and analogous problems have been studied from a theoretical point 

of view by several authors: Aronson-Crandall-Peletier [2], Berryman-Holland [3], 
Friedman-Lacey [4], Friedman-McLeod [5], [6], Levine-Sacks [13], Sabinina [15], and 
Sacks [16], [17], [18]. M.-N. Le Roux has proposed a numerical method in [8] and 
[9] to compute the solution of a similar problem (1.1) with m > 1 (slow diffusion 
problem). 

In the case a = 0, there exists an extinction time T* such that the problem 
(1.1) has a unique classical solution, positive on Q x [0, T* [ and null for t > T* 
(see [3], [15]). Concerning this last case, a semidiscretization in time is proposed 
in [10] by M.-N. Le Roux, for which the numerical solution has the same properties 
as the exact solution, so it allows the calculation of a numerical extinction time. 

In the case a > 0, according to the values of P1, the solution of (1.1) may vanish 
or blow up in a finite time: 

* For P1 c [m, 1], the solution of (1.1) cannot blow up, but it may vanish in 
some finite time; 
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For P1 > 1, it is possible for the solution to vanish or blow up in some finite 
time according to the initial data. 

Here, we study the semidiscretization in time of the problem (1.1): we propose a 
scheme whose solution has the same properties as the solution of the theoretical 
problem, in particular extinction or blow up in a finite time. A complete discretiza- 
tion of (1.1) using a P1-finite element method has been studied in [14]; the results 
obtained are the same as for the semidiscretization in time and the proofs are anal- 
ogous, so, we shall not develop this point. Further, numerical results concerning 
this problem or similar problems may be found in [12] or [14]. 

An outline of this paper follows. 
In ?2, we recall some theoretical results and set up sufficient conditions on the 

initial data for the solution to vanish or blow up in a finite time. 
In ?3, we define a numerical scheme for the semidiscretization in time of (1.1) 

and we prove the existence of the numerical solution. An iterative method to solve 
the nonlinear equation obtained at each time step is proposed and its convergence 
is proved. 

In ?4, we study the behavior of the numerical solution; it has similar properties 
as the exact solution. 

In ?5, we prove the convergence of the numerical method. 

2. ASYMPTOTIC BEHAVIOR OF THE SOLUTION 

By using the variable v = um, it is more convenient to work with the transformed 
equation 

pvP-lvt +Av = agvr, t > O, 
(2.1) V(O) = Vo=U0M> O 

where p = , r - P; SO p > l and r > 1. A denotes the operator -A of domain 
D(A) = Ho' (Q) n H2 (Q). 

This problem has a unique solution at least on a bounded interval ([16]). 
We suppose that p satisfies the following hypothesis: 

(2.2) P > I if d < 2; 1 < P < d + 2 if d > 2, (H1) 

which assures continuous and compact embedding of Hol(Q) in LP+l(Q). Then, we 
denote 

(2.3) C(Q) =Inf,EH1(Q) 0 oV902dx. 
+11 

We suppose also that the initial condition is in Ho'(Q) n cE(Q), e > o. 
For s > 1, we denote by I 1 the natural norm in L8(Q) and by I the one of 

L ̀ (Q). 

Lemma 2.1. If r < p, the solution v of (2.1) exists for all t > 0 and satisfies 

(2.4) ||V(t) ? vo ? 
p r 

t, ifr<p, 

(2.5) lv(t) 1oo < Ilvo II,exp(ot), if r =p. 
P 
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If r > p, the solution exists at least on the interval [0, Ti], where 

(2.6) T 1 = - 
1 I 

a r -p Iv0II0- 

and satisfies 

(2.7)~~~~~~~I Iv (t) I1,r,,- p< |lvolloo Tl - t. 

Proof. In the same way as Sacks in [17], we obtain that the solution of (2.1) is 
bounded by the solution w of the ordinary differential equation 

(2.8) pwpl(t)w'(t) = cawr(t), 
t > 0, 

w(0) = IIVO .00 

The solution w is written w(t) = vo I0(1 + cePpr IIvo 1r0- Pt) ?r if r #4 p and w(t)= 
vO exp(pt) if r =p. 

So, it is defined for all t > 0 if r < p and for t < T1 if r > p and we deduce the 
estimates (2.6) and (2.7). 

We introduce the Lyapunov functional JP defined by 

(2.9) 

P (W)= IVWp2dx - ra j r+1dx VWs E Ho(Q) nLr+l(Q). 

Lemma 2.2. The mapping t - J P*(v(t)) is decreasing. 

Proof. By multiplying the first equation of (2.1) by vt and integrating on Q, we 

obtain 

(2.10) P vp-1(vt)2dx + j VvVvtdx = af vvtdx; 

this equality may also be written as d J*(v(t)) = -pQ vP- 1 (vt)2dx, so the deriv- 
ative in time of J*(v) is negative, which proves the result. 

Lemma 2.3. For t > 0, we have the inequality 

(2.11) IIvoIIP+1 2P + J*(otlvlP+1. p+1 
-2 

J*(vo)t 
? 

Iv(t) I+1 

Proof. By multiplying the first equation of (2.1) by v and integrating on Q, we 

obtain 

(2.12) P vPvtdx + jI7VF 2dx = aj v?1dx, 

that is 

(2.13) P dIv(t)IIP+1 + 2J*(v(t)) = a + 1 f vr+ldx. 
P ? 1 dt P+1 r ? 1 

As the mapping t J*(v(t)) is decreasing, we get p+1 dt llv(t) IIP+1 + 2J* (vo) > 0; 

we deduce immediately (2.11). 
Now we show that if J*(vo) < 0 the solution of (2.1) tends to +oo in the case 

r < p or blows up in a finite time in the case r > p. 
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Theorem 2.4. If J*(vo) < 0 and r < p, then lim llv(t)llp+l = +oo, except in 

the case r = 1 and J*(vo) = 0. 
If J*(vo) < 0 and r > p, the solution of (2.1) blows up in a finite time Tb such 

that 

(2.14) T1 < Tb < T2 

with 

(2.15) T2 = 1 p r?1 I 
ar-p r-1 C2(Q) jvoj~ji'rP 

where C2(Q) is a positive constant depending only on Q. 
Moreover, for t E [0, Tb [, we have the inequality 

1 

Proof. Let us prove the result first in the case r < p. The relation (2.12) may also 
be written as 
(2.17) 

p 
1 

d llv(t)llp+ = -(r + 2)J*(v(t)) 
+ r - 

IVv(t) 2dx 

as the mapping t > J* (v(t)) is decreasing, and by using the positive constant 
defined in (2.3), we get 

dt llv(t)llp+0 + (r(+ I)J*(o) > 2- C(Q)Iv(t) 112 
p ?1 dt p+l 1 ? kO - 2 P1 

If J*(vo) < 0, this inequality leads to llv(t) Ilp1 > Ilvoll + (P1r) C(Q)t, then 
lim llv(t)H|p+i = +00. 

If r > p, we use the equality (2.13) and we get 

(2.18) p+ Idt ll-v(t) 11p+1 + 2J* (vo) r?1 l lv(t)llrr+1. 

By using the Holder inequality 

(2.19) 

Hv4iVr+l > C2(Q)HvHii'+l Vv E Lr+1(Q) with C2(Q) = (mesQ) T~ 

we deduce if J*(vo) <0 , then 

dt 11v(t)1p_+r1 P _a _ r-p C2(Q) 

and by integrating in time we get 

l vl V? I -P[- X- aP C2 (Q)| |VO | |pP t] < II|v (t) | I-p+ 

The first member of this inequality becomes infinite at the time T2. We deduce that 
T2 is a bound on the maximal time of existence, and by using the same argument 
as Levine-Sacks ([13]), we obtain that the solution blows up at a time Tb < T2 and 
from Lemma 2.1 such that Tb > T1. 
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Theorem 2.5. If r < p and vo satisfies 

(2.20) ot||VO |iI1 < C(Q)/C2(Q), 

then the solution of (2.1) vanishes in a finite time Te such that 

(2.21) Tel < Te < Te2 

with 
(2.22) 

Tel 2 1? p i and T - 
P l rp-+ 1 

2-- + J* (vo) e2 Pi C(Q) -C2(Q)axjvo jr+1 

Proof. From the relation (2.12) we get 

p d IIV(t)llp+l++C(Q)IIV(t)11 < allv(t)llr+l 
p+Idt_1 + 

- V+1 

The right side can be bounded by using the Holder inequality 

(2.23) K Vllr+l < C2(Q) vIIllp+l j Vv L +,(Q). 
Thus by denoting (p(t) = C(Q) - aC2(Q) jv(t)l ijr1, we get 

(2.24) d 
llv(t)llpP+l < -P - 

(t). dt ~~~p 
We can check that if ~o(0) > 0, namely aC2(Q)ljvojj 

r- < C(Q), the mapping t H-* 

(p(t) is increasing, which in addition to (2.24) implies dt Ilv(t) llpl < -P '(p(0). By 

integrating in time we get 

-1 p llv(t) llp+- ' -< lvo lp+1 - P p(O)t 
If the right side of this inequality becomes null in a finite time, then the solution 

v vanishes in a finite time Te such that Te < Te2. 

From Theorem 2.4, the solution cannot vanish if J*(vo) < 0; hence the left 

inequality in (2.21) proceeds easily from (2.11). 

Theorem 2.6. If r > p and vo satisfies 

(2.25) ar llv0 l,r,, p11v0 lP+l < C(Q)V 

the solution of (2.1) vanishes in a finite time Te such that 

(2.26) Tel < Te < Te3 

with 
- a(r -1) Vo4 

(2.27) Te3 = T1 [i C(Q)p (P-1) llvoll llvollp 

Proof. From the relation (2.12) we get 

p 1 +t )lv(t) lip+, ? C(Q)v(t)l+1 ? allv(t) 2 v(t)llp+l . 

Hence we deduce 

p I dt ?lV(t)0l P, | + C(Q) < alv(t) |rp Plv(t)llpi. 
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We use the estimate (2.7) to obtain 
d 1P-1I pl- T1 rI(\P- 
d IIV(t)IIp+l 

? 
P C(Q) < a T 1-t 1VO??PIIV(t)I1P+1 dt P ~ P p T 

Let us denote Ci = P-l C(Q), ,1 = Pl; this inequality may be written as 
P r-p 

dt ((-t1lvtlpl < -Cl(Tl -t), 

and by integrating in time between 0 and t, it follows that 

(2.28) 

Il(IP+ 1 < [livo lip+ ,u+1 
C 

]T (Tllt& + 
Cl 
+ - ( t) 

~~~~ +11- 
( i 1 

If vo satisfies lvo llp+1 < c+TI, namely if ar - 1 vo 1r 
- 
PIIvo VI IjP < C (Q), the right 

side of the inequality (2.28) becomes null at the time Te2 such that 

M r7)/+ =lt+ -(-_+1 
1VO1 P+-11 

(Ti Te2)"+1 - T1 [1-(/ ?1) C T1 J 

We conclude that the function v becomes null in a finite time T, < Te2. 

The left inequality of (2.26) again proceeds from (2.11). 
In the particular case r = 1 (i.e., P1 = m) we have more accurate results. 
We introduce the functional F defined by 

(2.29) 

F((p) = 2 Jf(Iv,o12 _o2)dx= 2J* () V(pEH1(Q). 

Let us denote A1 the first eigenvalue of the Dirichlet problem -Ap = Ap, x EQ, 
p = O,x E &Q. 

We have the inequality F((p) > C(Q)\-', and since 

(2.30) d 1 1 v(t) _ p+= P F(v(t)) 

we get 

(2.31) 11v(t)1pj < Ilvollp p- IA p l -A C(Q)t. P+1- P+1 P Al (Qt 

Then, if a < A1, the second member becomes null in a finite time, so the solution 
vanishes in a finite time Te such that 

Te < P A1 P+vo 
p-1A1-a C(Q) 

We easily prove that the mapping t - F(v(t)) is decreasing, then from (2.30), 
we get 

(2.32) l v(t) Pi+J ? v0I+1- F(Vo)t. 

In the case A1 > 0, if F(vo) < 0, then we obtain immediately that lim llv(t) IP+1= 

+oo; if it is not the case, by using the same argument as Friedman and McLeod 
in [6], we prove again that lim l v(t) lp+1 +oo ([14]). 
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If a = A1, then the problem has a global solution which tends to OPi as t +00 

(P1 is the eigenfunction corresponding to A1 satisfying P1 > 0, |IP111L1(Q) = 1 and 

0 (f v'pldx) P). The proof uses the same argument as Sacks in [18]. 
In the particular case r = p (i.e., P1 = 1) we also have more precise results 

(see [10]). 
We define the functional G as 

G((p) 2 j ,V7p2dx, V(p E Ij(Q), 

and we prove that the mapping t 1 - G(v(t)) is decreasing. From the equality 

p dt 1v(t)JIPi1 + G(v(t)) = ajjv(t) jjP1 p- I dt + + 

we get 

ex( p t) -, v(t)p ? p jG(v(s)) exp (sP 1 )ds vo 

and since the function t - G(v(t)) is decreasing, we obtain 

(2.33) 11v(t)JIP+1 > exp( 
-i 

(1IlvollpG -G (vo) + 
G (vo) 

P+ - p P+a ja a 

and 
(2.34) 

11v(t)JIp 
' 

< exp (aP 1t) (vO-Ivllp- _ (v(t))) + G(v(t)) 

Since G(v(t)) > C(Q), if a llvollp1 < C(Q), the solution vanishes in a finite time 
Te such that 

Te < , p I ln ( C()s l|v lA 

If aellvollp1+ > G(vo), then the solution tends to infinity as t - ?Ox. 

3. DEFINITION OF THE NUMERICAL SCHEME 

If we use a classical Euler scheme for the semidiscretization in time of the prob- 
lem, the corresponding numerical solution cannot vanish or blow up after a finite 
nuxnber of time steps. 

So, we generalize here the numerical scheme used in [8]: if vn is the approximate 
value of the solution at the time level tn = nAt (At is the time step), then vn+1 is 
the solution of the equation 

(3.1) 
p 

Vn+1 (V Pi4 -VP-1) + AtAvn+1 = At(av1n+ rvnl + a2vP+lv7)-p 

with a1 + a2 = a), a, a2 > 0. 
If r < p, we choose a2 = 0, al = a in order to avoid negative powers in the 

second member. 
If r > p, if a2 = 0, the solution of (3.1) may become null in a finite time, but 

it cannot blow up in a finite time when this physical peculiarity appears for the 
continuous problem. If a1 = 0, the solution may become null or infinite in a finite 
time, but this solution is not always bounded by the solution of the differential 
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equation (2.8) as it is the case for the exact solution; it depends on the values of r 
and p. So we choose a, and a2 such that the numerical solution is bounded by the 
solution of the differential equation and is as close as possible to this solution. 

This leads us to consider the following values of a1 and a2: 

a1 = a, a2 = 0 if r < p, 

(3.2) at1 = P 1 a), Ca2- 1rp if p < r < 2p-1, 

ae1 = O, a2 = a if r > 2p-1. 

Lemma 3.1. If the solution vn is positive on Q, vn E Ho (Q) n c6(Q), (c E]o, 1[) 
and satisfies 

P - (3-3) 2 AtllvnlrP < 1 in the case r > p, 

then the problem (3.1) has a maximal nonnegative solution v E Ho4(Q) n C2(Q)_ 
Besides every nonnegative solution v satisfies 0 < v < v. 

Proof. The problem (3.1) may be written as Avn+1 f(vn+l), where f is the 
function defined by 

(3.4) 

(P -1)At [(1 n Atv PP) V U (- 2L n P)UJ 

where f satisfies f(0) = 0. 

In addition, if (3.3) is satisfied, (3.1) has a constant supersolution Cn such that 

1 11 Pn 1 o I00 | 
(3.5) Cnp -~T~ 

1 - cx2p_1 Atllvnfl11rjP 

Hence we deduce from a result from Amann [1] that (3.1) has a minimal solution 
(the null solution) and a maximal solution v Ec C2(Q). Besides any solution satisfies 
v E C2(Q) and 0 < v < vU. 

Lemma 3.2. Under the hypothesis of the previous lemma, (3.1) has at most one 
positive solution. 

The proof is the same as in [8]. 
In order to set up a sufficient condition for the solution of the numerical sheme 

to be positive, we introduce the functional F, which is defined by 

(3.6) 

F(p) = :I 
j (!VP! 2 ajCpr+l) dx, Vp- H1(Q) nLr+l(Q). 

Lemma 3.3. Under the hypothesis of the Lemma 3.1 and if vnsatisfies 

(3.7) P_ AtF(vn) < 11vn11P+ij 

then (3.1) has a positive solution in Ho'(Q) n C2(Q). 
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Proof. Let us introduce the set K and the functional Jn on Ho (Q) 

(3.8) K ={v E HI (Q)/j (1-c-2P1 Atv-P) lvlP+ldx = l 

(3.9) 

Jn(v)jVXIvv dx- ( 1)2tivx- V (-l 1 + ?ajlA /tv?4 P)v2dx, 

and let us consider the minimization problem pOn e K, Jn ((pn) = min Jn (v). By 
vCK 

using a Holder inequality, we easily set 
p+1 

(1 +a, p-i Atv r-p~ P1 

( 2 V) , dx, Vv E K. 

Hence, Jn has a lower bound on K. 
Let pmn,k be a minimizing sequence; since JJ( pn,kj) = J(Gpn,k), we may suppose 

(Pn,k>O This sequence is bounded in Ho' (Q), so we can extract a subsequence, again 
labeled (On,k, which converges to pOn weakly in Hol(Q) and strongly in LP+1(Q). 
Hence we have pOn >? 0, pOn e K and for all v E Ho' (Q), we obtain 

(3.10) 

ASn - p)At-1 + alvr-1) Sn = Jn(pn) (4-a2 p AtvrnP) p 

Then, if Jn(pn) < 0, the solution vn+1 of the problem (3.1) is defined by 

(3.11) Vn+ ( AtJn (P)) (Pn 

It remains to determine a sufficient condition for Jn (()W < 0 
Since the function n (f= (vP+ 1 - a2P-1 Atvr+1)dx) pVv belongs to K, we 

necessarily have Jn ((Wn) < Jn (4'n), where 

(3.12) 

Jn( )n) = I IVn 112+ (F(vn)- (p-) livni lP+1) 

2 

xKJK (VPn+l-na2 Atv+) dx) 

Hence if Jn(V$n) < 0, namely if P 1 AtF(vn) < vn P+ 1, then we obtain Jn((pOn) < 0 
p + 

and (3.1) admits one positive solution. 
Now we prove that the numerical solution is bounded by one of the differential 

equations (2.8), as it is true for the exact solution. 

Lemma 3.4. If the parameters ce1 and ae2 are chosen as in (3.2) and if the hy- 
potheses of Lemmas 3.1 and 3.3 are satisfied, we have the inequality 

(3.13) livnmloo < |vo0 io( (1 + 1 v I 1r 7ptn) if r : p, 
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(3.14) ? < 
ton 

exp (-t) 

Proof. We denote by Wn the solution of the differential equation (2.8) at the time 
level tn = nAt, 

Wn = wo (1 + ? Atw' P) if r ZAP, 

Wn = WO exp (- tn), 

and we prove the lemma recurrently: the result is true for n = 0 since w(0) Hvo H oc 

Then Wn+1 is a supersolution of (3.1) if f(wn+l) < 0; namely 

Vp- 1 a 1 Atvvi) ? wp;ji 
P 

a19 1 Atv'P) Vn (1 + R /n - < n+l1 -(2 P tn) 

that is 

v (1 + p, - \ AtLP) 

P-1 

<Wn (1 ? a rAtwL P) (1 P ArtP) if r p 

and 

vn j1 (+ e /At) < w 1exp ( )At) if r =p. 

As IvI Vl00 < wn, in the case r = p, the above inequality is immediately verified and 
in the case r :A p it will be true if 

(3.15) 
P-1 

1 + a,1 A\tW'rP < (1 -C Aztw' P) 1 + a) \tw' P) 

Let us prove that this last inequality holds if a1 and a2 are chosen as in (3.2). For 
this, we consider the mapping h : x F-* (1 - a2X) (1 + a x ), where ,u =-, r :A p 
This function is defined for x > 0 if r < p and for -ax < 1 if r > p. Moreover, it is 

easy to check that h" (x) > 0 Vx ' [0, 7jl [. So we have the inequality h(O) +xh'(0) < 
h(x). In particular, for x = P-' Atwr-P, we obtain the inequality (3.15). We deduce 
Vln+1i I, <_ Wn+1, which achieves the proof. 

Computation of the positive solution of the numerical scheme. Equation 
(3.1) may be written as 

AVn+1 = f (Vn+1)v 

where f is the function defined in (3.4). 
In order to compute a numerical solution of (3.1),- we use a result of Keller [7]. 

The function f satisfies the inequality f(v) - f(u) > -m(v - u), where m is the 
function defined on Q by 

(3.16) 

M p-i)L( Pi( aP; 1Atv-P) - vp1 (i ? ai 
P 
1_t- 

- 
wt C= (deie ( )Cn. 1 - 2 /n n n 

with Cn defined in (3.5). 
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So if we define the sequence (Vn+l,j)j>o by 

(3.17) (A + mI)vn+l,j+l = f(vn+l,j) + mvTn+l, 

or 
(3.18) 

(A + mI)vn+l,j+l (p _ ( -2 c \i AtvVP) (pc V1 -n+,j 

we obtain a monotone sequence if the first iterate is a subsolution or a supersolution; 
it is the choice of Vn+1,O that determines whether the sequence is decreasing or 
increasing. This sequence converges to the solution. For example, we can choose 
Vn+1,0 = Cn since Cn is a supersolution and the sequence (Vn+l,j)3>o is a decreasing 
sequence converging to vn+1. 

If r > p, the constant Cn may be very large when tn is close to T1. So we 
shall prove that in this case we again obtain a convergent sequence (vn+l,i)j>o by 
choosing vn+i,o = vn. 

In order to prove this result, we need the following lemma. 

Lemma 3.5. For n > 1, we have the inequality 
1 

72 a, P1 Atllvnr-p P5TT 

(3.19) Vn1 ? P ti ) v if r > P. 
p 

Proof. Let T > 1; the function T P-1 vn will be a supersolution of (3.1) if 

Avn > P vP +?a,1 
P 

Atvi -T7VP P-2 p Atvn, 
(P -1)At P h ? P / 

but 

A 
=(P Pl),t 

v n-1(+cl P tn-1) -1- P /tn l)n) 

which implies Avn >- P P Then for n > 1, the inequality will hold if 

(P-l)/\ (T - 2)vP > a1v' + Ta2Vr 

which will be true if 
2 + a,1 P1 p /1vn Tlr-Op 

- -1-a P1At |r-p i -a2 P-'At lvnl P 

Theorem 3.6. If r > p and Vn+i,o = vn(n > 1), the sequence (vn+l,j)j>o con- 
verges uniformly to vn+1 

Proof. Let us consider the sequences (wj)j>o, (zj)j>o obtained from (3.18) with the 
following respective initial values: 

t1 - a2 P /t11Vn1r PA P-i 
WO t 

= +r Vn+i, zo = Cn. 

The following inequalities hold: wo < vn < zo (see (3.19)). Since the operator 
(A + ml) is monotone and the mapping u -* f (u) + mu is increasing, we deduce 
that wj < Vn+1,j < Zj- 
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Besides, since wo is a subsolution of (3.1), the sequence (wj)j>o is a monotone 
increasing sequence converging uniformly to v,+1. In the same way, since zo is 
a supersolution of (3.1), the sequence (zj)j>o is a monotone decreasing sequence 
converging uniformly to v,+1. Therefore, the sequence (wj)j>o converges uniformly 
to v+1. 

Remark 3.7. We also observe that the sequence (vn+l,)j>o converges more rapidly 
by taking vn+l,o = vn in the case r < p. 

4. PROPERTIES OF THE NUMERICAL SOLUTION 

In this part, we check that the numerical solution has the same properties as 
the exact solution. We prove that the solution of the numerical scheme exists 
and remains positive during at least a finite lapse of time and we obtain sufficient 
conditions for this solution to become infinite or null in a finite time. 

Lemma 4.1. For n > 0, we have the inequality 

(4.1) 

P \ 2 j (lVvn+1l 2 -a2vj-PvP+ - alvv-1v2+i)dx 

<_ llvnllp+l - 11vn+11llp+l- 

Proof. By multiplying equation (3.1) by vn+1 and integrating on Q, we get 

P j v+1 (V4 -+ -VP-) dx + At Vvn+l 12dx 

= At (a,j V`1v+1 dx+ ?a2j vn-PVP+l dx). 

Besides, we have the inequality 

v2+1 V +l- VP- )dx> 11Vn+1 112 +111vn+111P+ - llvnil+l)- 

We deduce the result. 

Lemma 4.2. For n > 0, we have the inequalities. 
If r < p, 

(4.2) 

vn1P- vP1 |1v AnV11P -1 < P 1t ( Vvn 12 av'+) dx. 

If r > p, 

(4.3) 
1Vn11p+1 -1v 11p+1 p+1 - vTh+1 P+l 

< P + t( f 
A VVn 2-1av\+1 dxp+-iP 

f 
X v /1 P+1 -VP+\' dx) 

P n\JP\/ PnlnQ n/1 
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Proof. From Lemma 3.3, the solution of (3.1) is written as 

- ~ \J~ p7-} 1 Vn+1 At (\Jn ((An)) (A)n 

Moreover, the function pOn as an element of K satisfies 

j (i - P / lAtv-P>Pn+1dx = 1. 

With both the previous arguments, we obtain 

(j (1 - P 1Atvr P) vP+1dx) = p-AtJni(n) 

Besides, from (3.12) we get 

2 

Jn((Pn) < Jn(vn)(j (1 a2_- Atv-P)vP+ldx) 

and we obtain 
2 

A-tJ(v ) ? (j ( p- 1ALrP)vP+ld)+ 

x (j (1 a2 n A r-P) n+ldx) 

If r < p, then a2 = 0 and we get 

-- At Jn (vn) <llvn 1 llvnlni 11PP+j I 
p 

P 

since 

Jn (vn) =j(1vn 12 - avn+)dx (- 1) V p+1 

we deduce (4.2). 
If r > p, then a2 > 0 and by using the Young inequality, we get 

At tJn(vn) < p:1JP ( va2P_Atv7P)vn+1dx 

?pj(ip 2 1 Atv'-) v P+j dx, + P+ 1J - a2 -\tn- n+1 
and by using the definition of Jn, we obtain 

p _,Atj IVvn12-alv'+) dx <?p1 y- Pv+p+? '+ 1 p) 

P /\ta2 X ( lVn+l + P< Vn11+) + 1Vn+ P+ p- 
- ~Ata2j ( vP+1?+p vP+19vrPdx, 

which gives the result. E 

Lemma 4.3. For n > 0, we have 

(4.5) fvn 1(Vn+1 - vn)2dx < 2P At(J*(vn) - J*(Vn+)) 
JQ ~~~~~p 
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Proof. From the following inequality shown in [8], 

aP-1 (b-a)2 < aP+1 - bP+1 + P+ lb2(bp-1 a-1), 
p-1 

we deduce that 

jvp-1(Vn+l - V)2dx < 11v,,1P+1 - lv+ 11P+1 + P+ - tiv2+1(vT - vP7l)dx. 

Besides, we have 

n+j 1 (vn-+1-v n1)dx 

P (At(j ( Vvn+1 2 _ 
-1V2 + 1 

C12V ++4vP-P) dx) 

Therefore, the previous inequality becomes 

jv-1n(vn+l-vn)2dx 
< J PVnjjp+l lIP+ Pn 

~~~~p+1 +1 P+l 

+ P 1\ tAt(j ( VVn+l 
2 _ a1V21v 

+ - 
ae2 v v-P )dx) 

If r < p, we have the inequality 

P+l , P+1<P?1,P-+ v~ Pjn|p+l - lIVn+l llp+l < l |Vn |+(|jVnj|p 
1 

- 
ljVn+fljlP+1) 

and from (4.2), we get 

v 'Vn1i |i+ ? P l \tn+1( l <- Atj(v2rV + 1)dx. 

If r > p, we use the inequality (4.3) directly and we obtain r > p and r < p 

jv-1 (Vn+1 -Vn)2dx < P /\tj ( VvA 12- av'+1) dx 

4 P82 /At j vr-p (v+1 - VP+ ) dx 

- K\tj ( Vvn+il 1 2-e V2+ r-1 - a2 v+1 v J-P) dx. 

By using the Young inequality, we easily prove that 

j n-1 (Vn+l -Vn )2 dx <2 \ J v)J V+) (VP v 2d ?2 At (J* (Vn) - J*(Vn )) 

and we deduce that the sequence (J*(Vn))n>O is nonincreasing. 
Now we state an existence theorem concerning the positive solution of the nu- 

merical scheme. 

Theorem 4.4. In the case r < p, if J* (vo) < 0, then (3.1) has for n > 0 a positive 
solution vn+1 E Hol(Q) n C2(Q). If J*(vo) > 0, then this problem has a positive 
solution at least until the time Tei defined in (2.22); this solution can become null 
after this time. 
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Proof. For n > 0, (3.1) has a maximal solution. We prove that this solution is 
positive and then unique during a nonempty lapse of time. From (4.2), we have 

(4.6) vlnjjP+ - |Vn+lllp+l < p t+ AtlIVn12+lF(Vn) 

and F(vn)flvnl) +1 < 2J*(vn) - 'r4 H r+i. 

Since the sequence (J*(vn))n>o is decreasing, we get F(vn)|lvn 12+1 < 2J*(vo) 
and we deduce 

(4.7) ||v0jjP+l - 2 P J - < ? | p 
p 

~ ~ Kv P+l' 

So, if J*(vo) < 0, the solution (vn)n>O is positive for any n > 0, and if J*(vo) is 
positive, it is positive at least until the time Tei. 

We deduce from Lemma 3.4 that this solution is always bounded. 

Theorem 4.5. In the case r > p, if J*(vo) < 0, then (3.1) has a positive solution 
for n > 0 at least until the time T1 defined in (2.6). 

If J*(vo) > 0, (3.1) has a positive solution during a nonempty lapse of time; this 
solution may become null only after the time Tel, or blow up only after the time T1. 

Proof. In this case, from Lemma 3.4, (3.1) has a bounded solution at least until 
the time T1 and from the inequality (4.3), we get 

vhp+1 p+1 
< l p+1 - vTn+1 llp+l 

< p+/tAJ*A(vn)JC(v)l( +a?(2 ) )J v r+dx) 

- a2 ALtj vv-PVj+ldx, 

and again we obtain 

p ||vn11|P+1 - 11vn+111IP+1 < 2-/\tJ(vn)- 

Then the inequality (4.7) holds and we conclude as in the previous theorem. 

Theorem 4.6. If r < p and J*(vo) < 0, then lim llvnllp+l = +??, (except in 
n -+oo 

the case r = 1 and J*(vo) = 0). 

The proof of this theorem is analogous to the proof of Theorem 2.4. 

Theorem 4.7. If r > p and J*(vo) < 0, then the solution of the numerical scheme 

blows up in a finite time Tb* such that 

(4.8) T1 < Tb* < T2 with T2 > T2 defined in (2.15). 

Proof. According to the definition of Jn in Lemma 3.3, we have 

P P At(J*v1 r - 11r\ 
/AtJn(vn) = -|lvnl l?l + At 2J*(Vn) ((12 - iaJ llVn lr+ 

Since the sequence (J*(vn))n>o is decreasing, if J*(vo) ? 0, then we get J*(vn) < 0; 
hence 

(4.9) |v|n||(l + a E2) 
p 

\llAtllvnllKl + <<--/ AtJ t (vn). 
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From the inequality (4.4) we have 

(4.10) 
2 

- p AtJn(vn) < lvn+fllp (J (1 - a21 lAtvV-P)VP+dx) 

Therefore, by using this estimate in (4.9), we obtain 

2 1l IlP+l + p(r 
1 

ojVnj82) P\|W |lr+ 
< |IVn+1Ip jvnP+i -a2 PAtvt I r+1) ; 

hence we get 

- (r-1 a-a2) P-'Atli Hr'ii1 
v + (1-a P 1 2 t fV'+'f+)P+l 

Besides, by taking into account the inequality (1 -qx)1 < (1-x)-q (0 < q < 1, 

0 K x < 1) and using a Holder inequality, we deduce that 

(4.11) 

1 - p+ l a2 p z\ tC2 (Q ) v2 | Vn | | p+1 

In order to simplify the notations, let us denote 

7=p? 1P l2C2(Q)P 

4=( 2a-a2)c2(rn p + 

It is easy to verify that the quantity (iy ? ,) is positive. From (4.11), the sequence 

(Zn)n?o iS increasing and satisfies 

(4-11)~ ~ ~ ~ ~ ~~- 
1t + r/\t1 a t -- <2 Z_AC(~nII Zn 

Otherwise, for a, b > 0, we have the inequality (see [14]) 

(4.12) P-l_ aP1 < P- 1 br-i (aP-r - bP<r). 

1 ~+1'2_1At2( -p nIP+ 

Hence we obtain 

p _ 1 (y + ,(i 2 p 1 tr-p 2 Zn -Zn+) 

F-pely, P 

p- 3 (~ 3 at Z- Z2 C ( 
namely,~~~~~~~r+ 
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Let us consider the function f: x + -Q?3) 'pXr-l _- yxr-IP. The previous 
inequality is written 

Zn+1 

The function f achieves its minimum at the point xo such that xop-l = , and r-1r+ 3 

is decreasing on the interval [0, xo], then we shall use the estimates, f ( zn ) > f(1) 

if xo > 1, and f ( Zn > f(xo) if xo < 1. 

If xo < 1, we obtain _4_P/At < Zn - znjr ; if xo ? 1, we get (-y + ,3) r-l At < 

Zp-r - zp-r 
n n+l1 

It remains to know the sign of (xo - 1) according to r and p. Let ro E [p, 2p - 1] 
be the unique root of the equation (ro + 1)3 = 2(p + 1)(r2 + 1). We easily get the 
following results. 

* If p < r < ro, then xo < 1 and we obtain 

(4.14) p+ ? vo (T 2Tt,) 

with T2 T(2+1)(r1)2T; we conclude as in Theorem 2.4. 2 2(r-p)(r+l) 
* If rO < r < 2p - 1, then xo > 1 and the inequality (4.14) holds with T2 = 

(r- l)(p+l) T 
p2-1-(r-p)2 2 

* If 2p-1 < r < p + p2-, then xo > 1 and (4.14) holds with T2 = 

(r-l)(p+l)42 
2(r-p) 

* If r > p + -1, then xo < 1 and (4.14) holds with T2 = ( r2)(P+1)T. 

Thus we obtain an upper bound on the blow up time according the values of r 
and p and we can check that T2 > T2 in all cases. 

Remark 4.8. The difference between the times T2 and T2 proceeds from the upper 
bound of the second member of the inequality (4.4) we used to obtain (4.10). 

We now set up a sufficient condition on the initial data for the numerical solution 
to vanish in a finite time. 

Theorem 4.9. If r < p and if vo satisfies (2.20), then the solution of (3.1) van- 
ishes in a finite time Te* such that Tel < Te* < Te2 with Te2 defined in (2.22). 

The proof of this theorem is analogous to that of Theorem 2.5. 

Theorem 4.10. If p < r < 2p - 1 and if vo satisfies 

(4.15) a 1lvollpl vo llp< (1 -cP Pt C(Q), 
~~415~~P 1 P r-p\ 

then the solution of (3.1) vanishes in a finite time Te* such that Tei < Te* < Te3. 
And, if there exists a positive constant 61 such that 

(4.16) r-1 v0 
P 

0~?CQ( 

a1 p- 1 llvo l vollp+l < C(Q)(1 - 61), 

then we have the estimate Te3 - T3 = O(At) with Te3 defined in (2.27). 
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Proof. The inequality (4.1) may be written as 

|Vn+1i Pl - IvTnllp+l 

P -i 1 
<K~ At 

p~~~~~ P llVn+1 lp+, 

x - TVvn+1 12dx + a2 j vnPvP+'dx + ?ce jvV1v2?dx) 

and by using the Sobolev constant C(Q) we easily get 

||Vn+1 llp+l - lIVn llp+l 

P +i - vTh1 

<ALp 1 (-0(Q) ? a2H1VnThOoP|| p ?i +l ? aivn7n ll'-P Ivn+l?Hip+); 

namely 

In+ 1 I |p+ 1 A1-8 \t |I |vn |1|1" 

< lVnil (1 +,P1 AtlVnl rP) PA C(Q) 
P+1 P~ 1 1P 

From Lemma 3.4, we have IIvnl I < T tn 00 0; - r-p a Tl-tn? 
Hence we obtain 

Ivn+1 ||pP+1 (1 
aC r-p tT-t, tn 

< lnlP+- (1 + 
0 

P A\tT _\CQ 

By using the notations Ci - ' C(Q) and ,t = P-' the previous inequality be- 
P 

comes 

(4.17) 

IVn+1 (T n -- 2tAt) ? I vnIIP+1(Ti-tn +L-? At) - AtC, (T1 -tn) 

In the case r < 2p-1, we have 2 =1 and /'= and by multiplying (4.17) 

by (T1 - tn+l )/-1, we obtain 

(Tl -tn+l)' lIVn+1 IlpP+l 

(4.18) ? Hvniji+(Tl -t ? (, - 1)At) (Tl -tn+ ) 

-AtCl (T1 - tn) (T1 -tn+ ) 

Since ,t > 1, we get (T1- tn+(,u-t1)At)(T1 -tn+?1)81 < (Ti -tn)" andwe obtain 

IIVn+1 Ilp 1(Tl -tn+l)/- < |IVnllpp+l T-nHCl At(T-n(lt+) 

which implies 
n 

vIn+1lijp-' (Ti - t,7+l1)1 < ?lvo 11 
P T1'jl - CiAtE (Ti - tj)(T1 -tj+l) 

j=O 

Since the mapping t -* (Ti - t + At)(T1 - t)1`1 is decreasing, we have 
n _ l'tn+2 

AtE (T1 - tj)(T - tj+?1)" 1 >] (Ti - s + ALt)(Ti - s)"-1ds, 
j=O t 
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that is 
n 

At E(T - t3) (T1 -tj+1) 
j=o 

> ? ((T - At)(T A ) (T -tn+2 ) Tl ( -tn+l + - ? ) 

Hence we obtain 

liVn+l lip+ 1(Tl -tn+l)/- 

< 
llvollPP+-1f + A(1/t8T 

? (T1- tn+2)H' Tl-tn+1 +? ) 

If vo satisfies 

(4.19) 1|v0 |P+l <C___ (T, +At) 

then the right side of this inequality will be null for t,,+i = T,3 such that 

(Ti- Te3 ?-At) (T1 - T3 -t) T (T1-e + e3l(1+)/C o||P 

(T1 - At) (T +?)At -T 1 ? (T1 - Te3)I+l 

Since T43 is bounded, we deduce easily that (T1 Te3 )'+1_(Ti-T'3 )/+1 - O(At), 
which gives Te3 - Te3 = O((At) if the quantity (T1 -Te3) is greater than a positive 
real 8 (independent of At). Then, as (T1- Te3)+l = T 1(1 - ), the estimate 
holds if there exists 61 > 0 such that /jJ'< 1- 61 or if vo satisfies (4.16). 

Besides, as (T1 - At)'-(T1 + A?) > T1"(T1 - /tAt), the inequality (4.19) holds if 

ilvod < ? fl (T1 - [At); namely 

r - p-i 
a8 111V 00 P 1 1Vo 1 p+ 1-? /\||VO||00 P Q 

The lower bound Te. of the extinction time proceeds from Theorem 4.4. 

Theorem 4.11. If r > 2p - 1 and if vo satisfies (2.25), then the solution of the 
numerical scheme vanishes in a finite time T,* such that Te. < Te* < Te3. 

Proof. In this case, we have a1 = 0 and a2 = a; then by multiplying the inequality 
(4.17) by (T1 - tn)-1, we obtain 

liVn+l lp II 7, 1(Tl -tn - At) (Tl -tn) 1 llp+(Tl -tn tAtCl (Tl -tn)t 

Since the inequality 

(T, -tn - At)(T1 tn)/-' 1 > (T - tn+l)/-'i 

holds, we get 

lv7+i KpPI (Tl -tn+l)t' < |vl llp+-(T1 - tn)' - ClAt(Tl -tn) 



480 M.-N. LE ROUX AND P.-E. MAINGE 

which implies 
n 

(4.20) v~Vn+1|ip < T1, IIvo I -p+-CCl ZtE (T1 -t . 
j=0 

But, 
n ~~~tn+11 /+ 

AtE (Ti -t )' > (Ti -s)'ds ? 1 +1 - (T- tn+l) ). 

j=0 0 

From this estimate and (4.20), we obtain 

Vnp+1 ? V Tp++1)(I Tl C (T-) 

If lvolIP 1 < CTl, then the right side of this inequality becomes null at tn= Te3. P+l - AL+l 
Thus the solution vanishes in a finite time T,* < Te3 and from Theorem 4.4 such 
that Te <?T* 

In the particular case r = 1 we obtain the following results analogous to the 
theoretical case (see [14]). 

* If a < A1, the numerical solution vanishes after a time T,* such that 

T < T* < P 1 VOp+ - e- p-1A1-a C(Q) 

* If a = A1, the numerical solution converges in LP+l(Q) to Op, with 

OP1 < (jv pldx)- 

* If a > A1, then lim JIVnllp+l = +0o- 

In the particular case r = p we have the following inequalities (see [11]): 

P P \(P P ___ 

P A AtG(vn+l) <_ 21+ a AtIllp+l-ll1n+111P+l < P AtG(Vn) 
P P)?laL X vTH+~1 - V +i1 ? P t(v) 

Since the sequence (G(Vn))n>o is decreasing, we obtain 

PvrlHp1 ? (i?aP lAnt) flP-_ G(vo)) ? G(vo) 

and 

Pvrjl1 ? (1?P 1 nt) (lvo 1 - G(vn)) + G(vn) 

Therefore, if vo satisfies a llvollp1 < C(Q), there exists a time Te = NAt such that 
the solution of the numerical scheme becomes null and we have 

(?P lt)N? 0(Q) 
(1 + a /\t) < C(Q) v - 

*If vo satisfies ajjvo jp+1>G(vo), then lim vIn llp+l = +?oo 
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5. CONVERGENCE OF THE NUMERICAL SCHEME 

Let T7,tbe the time existence of the numerical solution. We define a piecewise 
linear approximation uAt of the weak solution u of (1.1) by 

(5.1) uAt=v' + - - vp) Vt E [tn,tn+l], t ? TZ\T, n At n nt<TT 

and we denote T* = inf T,t(T* > Ti). 
O<LAt<LAto 

Let T < T*. Here we prove that the solution of the numerical scheme converges 
to the weak solution of (1.1) on the interval [0, T]. 

We need the following two lemmas. 

Lemma 5.1. If vo E Ho (Q)nCE(Q), ( e ]0, 1[), then there exists a positive constant 
C depending on Q, a, p, r such that 

(5.2) 

S j Vn+1(vn+i -Vn)(V - VP7l)dx < AtL(1 + CAt)(J* (vo) - J* (VN)) 

Proof. By multiplying (3.1) by (vn+1 - vn) and integrating on Q we get 

(5.3) 

(p p)AL Vn+I(Vn+- Vn)(V Y1i -VP-l)dx 

=[-2 j VvVn+l 12 dx + 2 VVn 2dx + a VnI(Vn+l Vn)dx] 

+ [-2 j V(Vn+l -Vn)2 dx 

? a2 j vr-vp + - p(v - VP)dx + 8 n P(Vn+1 -Vn)(Vn+l- n) 

+a j vn- 1 (V+ )v,2 dxH n jv7(Vn+1 Vn)dX 

By using the Young inequality, we have 

af V'(Vn+1 - Vn)dx < > Ov liVn+lllr+l- IvnllDr+l; 

hence 

(5.4) 

Vv VVn+l 12dx + J Vvn12dx + aj v(vn+l -vn)dx < J*(vn) -J*(vn+l). 

Besides, we have 

(5.5) - V1 IV(vn+l vn)12dx <-l (vn+1 - vn)2dx. 

If r < p, then a1 = a and a2 0 and the second part of the second member of 
(5.3) may be bounded by 

(5.6) j (Av-l- ?1 ) (vn+l - Vn)2 dx. 
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Let us denote Q+ {x E Q/vn-l(x) > Al }; so the quantity (5.6) may be bounded 
by 

x}-r 

JQ avn-1vr+1 vn)2dx < a(a) I vn71(vn+i vn)2dx 

and from Lemma 4.3, we obtain 

(5.7) 
j [aviin 2- (vn+ 

- vn)2dx < CAt(J*(vn) - J*(Vn+l)) 

with C = 2aP+ ()r-1 

If r > p, then we denote M = supnAt<T lJvnlJJ, and the second part of the 
second member of (5.3) is bounded by 

(5.8) j (niMrPz4-1 ? a2pM21v2 - (vn+1 - Vn)dx. 

If we denote Q+ {x E Q/a2PMP-lv-P> >}, then this quantity is bounded by 

X (ai Mrpv7-1 + a2PMP-1v-p) (vn+i-vn)2dx. 

If r < 2p- 1, then we have the estimate vr-P < ( 2a2pMP ) vPr p1 on Q?, and 

if r > 2p - 1, then we have the estimate vr-P < Mr-2P-lv-l. So in these two 
cases, we obtain 

j (alMr-Pv'j + 22pMP-v2- (Vn+1 Vn )dx 

< 

cC Cjvn-l(vn+l 
-vn)2dx 

a MP(2~2PMP )- P ,Mr+apM-P). wih C, = Max(aelM'-P + Ce2PMP- 1 alr- +apP a2PM'-r 
By using Lemma 4.3 we deduce that 

(5.9) 

j (aiMr-PVJ-P + a2pMPMP-lvn- Al) (vn-vn)2dx 

<2 C2CAt(J*(vn) - J*(Vn+)). 
P 

Then from the inequalities (5.3), (5.4), (5.7), (5.9), we obtain the lemma. 

Lemma 5.2. If NAt < T, then there exists a positive constant C(p) independent 
of the initial condition such that 

(5.10) 

vn+1 Vn P p n(n+1 -n )|d 
n=( 

< CAtp? 1(J*(VO) -J*V) 
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Proof. We recall a result shown in [10]: there a positive constant C(p) such that 

N~~~~~ 
E JL] VP -Pv- v +? (vp + -vP-) dx 

p 

< C(p)N 1 [( j 
Vn+ (Vn+1 -Vn) (V 

- - )dx) 

? 

(x 

Jfvn 1Vm? Vn3dx)1 

With Lemmas 5.1 and 4.3, the right side of this inequality is bounded by 

C(p)N' 
[ ( P 

t(1 
+ 

Czt) 
(J* (vo)-NJ* (VN))) 

+ (2 : ptn(J (VO) -J -(VN)))j 

so, for NzCt < T, by CzttC (J*(VO)-JJ*(vO))p-1 

Theorem 5.3. The function UAt converges when Z\t tends to 0, to the weak solu- 
tion of problem (1.1) in C(O, T; L1 (Q))v 

Proof. The function uAt is bounded in C(O, T; L?(Q)) from Lemma 3.4 and in 
C(O, T; Ho(Q)). Besides, in the same manner as in [10], we obtain that dUAt e 
L2(0, T; L1(Q)). Hence, there exists a subsequence, again labeled uAt, such that 
uAt converges to some function u in C(O, T; Lq(Q)) with q < 2d if d > 2, q < oo wih d-21 <0 

if d = 2 and in C(O, T; Q) if d = 1 ([19]). 
It remains to prove that u is a weak solution of problem (1.1). Let p0 be a test 

function in C2(Q x (0, T)) n c1(Q x [0, T]); ,D(x, t) = 0 for x e &Q. 
Multiplying the equality (3.1) by bp and integrating on Q, we get 

p 
L/n+j V 

P-1 - r-1 p rdx 
Jb Pl n+1( -l-n-li 

+ZAtj (Vn+?AXp-OiaVn+? n-v lp- a2VP+1V-v Xp)dx =0; 

hence, for T NAt we get 

(5.11) 

E 1 Jb Jb P Vn+1 (V - VP- 1-) ndxdt 

N-1 tn+1 

+ V j j (Vn+iAip -Ovlvn+l7n p - C2vn+vn p)dxdt O. 
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The first term of this equality may be written as 

A /t J P _ lvn (n+1-n 1 n++ Vn)id 

+ 1Ty-UAt(pdxdt. J Qdt it 

From (5.10) the first part of this equality tends to zero when At - 0 and the 
second part tends to 

(5.12) 

JT J Uu dxdt + J u(x, T)p (x, T)dx - uo (x)p (x, O)dx. 
OQdt QQ 

We prove in a classical manner ([14]) that the second term of (5.11) when At 0 
tends to 

(5.13) j P Ap -a cPu)dxdt. 

So u satisfies the equation 

J u dxdt + PJ (uPAS - au%pD)dxdt 

J o (x) p (x, 0)dx - U(x, T) p (x, T)dx 

and is a weak solution of (1.1) 
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