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NUMERICAL SOLUTION OF A FAST DIFFUSION EQUATION

MARIE-NOELLE LE ROUX AND PAUL-EMILE MAINGE

ABSTRACT. In this paper, the authors consider the first boundary value prob-
lem for the nonlinear reaction diffusion equation: u; — Au™ = auP! in £, a
smooth bounded domain in R%(d > 1) with the zero lateral boundary condi-
tion and with a positive initial condition, m € ]0, 1[ (fast diffusion problem),
a > 0 and p; > m. Sufficient conditions on the initial data are obtained
for the solution to vanish or become infinite in a finite time. A scheme for
the discretization in time of this problem is proposed. The numerical scheme
preserves the essential properties of the initial problem; namely existence of
an extinction or a blow-up time, for which estimates have been obtained. The
convergence of the method is also proved.

1. INTRODUCTION

In this paper, a numerical scheme is proposed to solve the reaction diffusion
problem: find a nonnegative function u defined on (2, a smooth domain R%(d > 1)
and such that

Uy — Au™ = auP? zeNt>0
(1.1) u(t,z) = 0 z€edN, t>0
u(0,z) = wup{z)>0 z €,

where m € 10, 1[ (fast diffusion problem), o > 0 and p; > m.

This problem and analogous problems have been studied from a theoretical point
of view by several authors: Aronson-Crandall-Peletier [2], Berryman-Holland [3],
Friedman-Lacey [4], Friedman-McLeod [5], [6], Levine-Sacks [13], Sabinina [15], and
Sacks [16], [17], [18]. M.-N. Le Roux has proposed a numerical method in [8] and
[9] to compute the solution of a similar problem (1.1) with m > 1 (slow diffusion
problem). ‘

In the case a@ = 0, there exists an extinction time 7™ such that the problem
(1.1) has a unique classical solution, positive on Q x [0,T7*[ and null for ¢ > T*
(see [3], [15]). Concerning this last case, a semidiscretization in time is proposed
in [10] by M.-N. Le Roux, for which the numerical solution has the same properties
as the exact solution, so it allows the calculation of a numerical extinction time.

In the case a > 0, according to the values of p;, the solution of (1.1) may vanish
or blow up in a finite time:

e For p; € [m, 1], the solution of (1.1) cannot blow up, but it may vanish in
some finite time;
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e For p; > 1, it is possible for the solution to vanish or blow up in some finite
time according to the initial data.

Here, we study the semidiscretization in time of the problem (1.1): we propose a
scheme whose solution has the same properties as the solution of the theoretical
problem, in particular extinction or blow up in a finite time. A complete discretiza-
tion of (1.1) using a P;-finite element method has been studied in [14]; the results
obtained are the same as for the semidiscretization in time and the proofs are anal-
ogous, so, we shall not develop this point. Further, numerical results concerning
this problem or similar problems may be found in [12] or [14].

An outline of this paper follows.

In §2, we recall some theoretical results and set up sufficient conditions on the
initial data for the solution to vanish or blow up in a finite time.

In §3, we define a numerical scheme for the semidiscretization in time of (1.1)
and we prove the existence of the numerical solution. An iterative method to solve
the nonlinear equation obtained at each time step is proposed and its convergence
is proved.

In §4, we study the behavior of the numerical solution; it has similar properties
as the exact solution.

In §5, we prove the convergence of the numerical method.

2. ASYMPTOTIC BEHAVIOR OF THE SOLUTION

By using the variable v = 4™, it is more convenient to work with the transformed
equation

pvP o + Av = o™, t>0,

(2.1) v(0) = yp=ug >0,

where p = #, r=2":s0p>1andr>1. A denotes the operator —A of domain
D(A) = H}(Q) N H2(R).

This problem has a unique solution at least on a bounded interval ([16]).

We suppose that p satisfies the following hypothesis:

2
(2.2) p>1ifd52;1<p<jf2

ifd> 2, (Hl)

which assures continuous and compact embedding of H}(Q) in LPT1(Q). Then, we
denote

1
(2.3) C(Q) =Inf e iy () o0 —5— / |Vo|*dz.
lellpr /o

We suppose also that the initial condition is in Hg(Q2) N C(Q), e > 0.
For s > 1, we denote by ||.||s the natural norm in L*(Q) and by ||.||cc the one of
L>(Q).

Lemma 2.1. Ifr < p, the solution v of (2.1) exists for all t > 0 and satisfies

_ —r -Tr i
(24) v @175 < llvoll? +a”7t, ifr <p,

(2.5) o(t)]l. < ||vo||ooexp<§t>, ifr=p.
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If r > p, the solution emists at least on the interval [0,T}], where
1 p 1

ar=p |lull?

(2.6) T, =

and satisfies

_ ., T
2. TP < [
(27) oI < ool
Proof. In the same way as Sacks in [17], we obtain that the solution of (2.1) is
bounded by the solution w of the ordinary differential equation

pwP H)w'(t) = oaw"(t), t>0,
@8) w(0) loolloo-

The solution w is written w(t) = ||vo oo (1 +app%r||vo||ggpt)ﬁ ifr # pand w(t) =
llvollo exp(5¢) if 7 = p.

So, it is defined for all t > 0 if » < p and for ¢t < T} if 7 > p and we deduce the
estimates (2.6) and (2.7).

We introduce the Lyapunov functional J* defined by

(2.9)
1
I =y [1vefde - 25 [ pia vee Bl @NIH@.
Q r+ 1 Q

Lemma 2.2. The mapping t — J*(v(t)) is decreasing.

Proof. By multiplying the first equation of (2.1) by v; and integrating on 2, we
obtain

(2.10) p/ P (v,)2dx +/ VoVudr = a/ v v d;
Q Q Q

this equality may also be written as 4 J*(v(t)) = —p [, v"~(v¢)?dz, so the deriv-
ative in time of J*(v) is negative, which proves the result.

Lemma 2.3. Fort > 0, we have the inequality

1 D + 1 * 1
(2.11) lvoll55; — QT T* (o)t < [lo(®) P57

Proof. By multiplying the first equation of (2.1) by v and integrating on 2, we
obtain

(2.12) p/ vPuds + /IV’UI2dI = a/ v ldz,
0 Q Q
that is
p i p+1 K _ r—1 r+1
(2.13) P dt||v(t)||p+1 +2J%(v(t)) = T i v dx.

As the mapping t — J*(v(t)) is decreasing, we get I—Jg’;—l%ﬂv(t)]]zii +2J*(vp) > 0;
we deduce immediately (2.11).

Now we show that if J*(vg) < 0 the solution of (2.1) tends to +oo in the case
r < p or blows up in a finite time in the case r > p.
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Theorem 2.4. If J*(vp) < 0 and r < p, then , lirgrl [lv(t)||p+1 = 400, except in
— 100

the case r =1 and J*(vg) = 0.
If J*(vp) < 0 and r > p, the solution of (2.1) blows up in a finite time T} such
that

(2.14) I1<TH <Tp

with
1 1 1

(2.15) =>-f * —,
ar—p =1 Cy(Q) |lvoll, 1}

where C2(Q)) is a positive constant depending only on Q.
Moreover, fort € [0, Ty[, we have the inequality

1
T, |7
(2.16) llvoll 541 [E—_t] < Mo@llpgr-

Proof. Let us prove the result first in the case r < p. The relation (2.12) may also
be written as

(2.17)
L S I =~ + DI 0e) + 5 [ Ve

as the mapping t — J*(v(t)) is decreasing, and by using the positive constant
defined in (2.3) we get

-

+1 * r—1 2
L L I + D00 2 T @I,

If J*(vo) < 0, this inequality leads to ||v(t)||p+1 > ||vo |25
im_[o(6) e = oo

If r > p, we use the equality (2.13) and we get

1+ E=U=D o (Q)t, then

p+1

p+1 * > r—1 r+1
(218) B I + 207 () 2 ol el
By using the Holder inequality
(2.19)

[l > Co @Il Vo € (@) with Co(0) = (mes )™ FF,

we deduce if J*(vg) < 0, then

r—p) ¢ _ Tl —p

G WO <l =L aue)

and by integrating in time we get

-1
T—p r—1r— p r—p T—p
ool 1 - e Lo @lmlt] < @l

The first member of this inequality becomes infinite at the time T5. We deduce that
T, is a bound on the maximal time of existence, and by using the same argument
as Levine-Sacks ([13]), we obtain that the solution blows up at a time T}, < T and
from Lemma 2.1 such that T, > T;.
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Theorem 2.5. Ifr < p and vy satisfies

(2.20) allwoll;} < C(9)/Ca(9),
then the solution of (2.1) vanishes in a finite time T, such that
(2.21) T., <T.<T.,
with
(2.22)
0 v
L 1 p “ S”p-{-l and Te2 _ p ” O||p+1
2 p+1 J*(vo) =1 C(Q) - Co(alwll:

Proof. From the relation (2.12) we get

p+ i dn || O + COOl@)124, < ool
The right side can be bounded by using the Hélder inequality

(2.23) lwll7F < Co() 0llt] Vo € Lo (D).

Thus by denoting ¢(t) = ( ) — aCo ()|l v()|7 p+1, we get
p—1

(220 & @I < 22 )

We can check that if ¢(0) > 0, namely ozC'z(Q)||vo||p+:l < C(Q), the mapping t —
©(t) is increasing, which in addition to (2.24) implies % Slo@®lby +1 1’;—130(0). By
integrating in time we get

p—1
—(0)t.

If the right side of this inequality becomes null in a finite time, then the solution
v vanishes in a finite time T, such that T, < T,.

From Theorem 2.4, the solution cannot vanish if J*(vp) < 0; hence the left
inequality in (2.21) proceeds easily from (2.11).

lo(®) 51 < llwollps —

Theorem 2.6. If r > p and vy satisfies

r—1 _
(2:25) a7 Iwollzc " lwoll7 < C(9),
the solution of (2.1) vanishes in a finite time T, such that
(2.26) T., <T.<T,
with

ar — 1) —p =
(2.27) T, =Th —Th|1- CEOm-1) llvollog Pllwo B3y
Proof. From the relation (2.12) we get
p+ — dtllv(t)Hiﬁ COIlo@®) 541 < alo®l @) 1511

Hence we deduce

p d _ —
il QL P+ CQ) < allp@) I Tl @)IE -
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We use the estimate (2. 7) to obtain

ol + Pt @ s —;1- g Il Iz

Let us denote C; = %C(Q), p==r
d
A(GEDEEC )n,,ﬂ) < —Ci(Ty - 1),

and by integrating in time between 0 and t, it follows that
(2.28)

CiT: T C
1 1:' ( 1 1 (T]_—t).

t
Ol < [yt - S5 ST L

< CiTy

If vy satisfies ||'uo||pJrl _1||vo||r‘1’||'uo||pJrl < C(92), the right

side of the inequality (2.28) becomes null at the time T, such that

llvollp 41

(T = Te, )+ = T CiTy

1—(p+1)

We conclude that the function v becomes null in a finite time T, < T, .

The left inequality of (2.26) again proceeds from (2.11).
In the particular case r =1 (i.e., py = m) we have more accurate results.
We introduce the functional F' defined by

(2.29)

1 2J*
F(o) = o [ (196" - ap?)ae = 2208 vp e (o).
”‘P”p+1 Q2 ||‘P||p+1
Let us denote A\; the first eigenvalue of the Dirichlet problem —Ap = Ap,z € Q,
p=0,z € 00.
We have the inequality F( ) > C(Q )4—— and since

(2:30) L oozt = ‘TF( o(t))
we get
—1 )\1 —
(2.31) @551 < llvollfst — T N, Ot

Then, if a < A1, the second member becomes null in a finite time, so the solution
vanishes in a finite time T, such that

D A1 ||'UO||p+1
p— 1 )\1 — C( ) )

We easily prove that the mapping ¢ — F'(v(t)) is decreasing, then from (2.30),
we get

T, <

p—1
(2.32) lo@)llpr = llwollpsy - —p——F(vo)t'
In the case Ay > 0, if F'(vp) < 0, then we obtain immediately that , liril lv(®)lp+1=

~+o00; if it is not the case, by using the same argument as Friedman and McLeod
in [6], we prove again that , 1115_1 lv(@)]lp+1 = o0 ([14]).
— 1T 00
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If o = A1, then the problem has a global solution which tends to 6p; ast — +o0
(p1 is the eigenfunction corresponding to A; satisfying p1 > 0, ||p1[z1() = 1 and

0= (fovh plda:)%). The proof uses the same argument as Sacks in [18].

In the particular case r = p (i.e., p1 = 1) we also have more precise results
(see [10]).

We define the functional G as

G(p) =

[ 1vettds, v e m(@),
| ||p+1 Q

and we prove that the mapplng t — G(v(t)) is decreasing. From the equality
2 L@z + G) = alulz]
we get
p—1 -1
e (— a2 izt + 220 [ wte) owp (- ol s)as = i,

and since the function ¢ — G(v (t)) is decreasing, we obtain

(2.33) lo(®)I[751 > exp(a—t)(” olP71 - (%)) + GE:O)
and
(2.34)

[e%

ool < exp (o222 (Huollzz - LA ) 4 SO

Since G(v(t)) > C(Q), if cv||vo||pJrl < C(9), the solution vanishes in a finite time

Te such that
T.<—P* 1 ( c) )
alp—1) " \C(Q) — aflvlE7y

If a||v0||p+1 > G(vp), then the solution tends to infinity as ¢ — +oo.

3. DEFINITION OF THE NUMERICAL SCHEME

If we use a, classical Euler scheme for the semidiscretization in time of the prob-
lem, the corresponding numerical solution cannot vanish or blow up after a finite
number of time steps.

" So, we generalize here the numerical scheme used in [8]: if v, is the approximate
value of the solution at the time level ¢, = nAt (At is the time step), then v,4; is
the solution of the equation

(3.1)

~1 -1 —1 -
Ungp1(vE ] — 00 ) + AtAvn g = At(@ivp v, + aovh v 7F)

-1
with a1 + g = @, aq, 0 > 0.

If r < p, we choose as = 0,17 = « in order to avoid negative powers in the
second member.

If r > p, if @z = 0, the solution of (3.1) may become null in a finite time, but
it cannot blow up in a finite time when this physical peculiarity appears for the
continuous problem. If oy = 0, the solution may become null or infinite in a finite
time, but this solution is not always bounded by the solution of the differential
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equation (2.8) as it is the case for the exact solution; it depends on the values of r

and p. So we choose a1 and as such that the numerical solution is bounded by the

solution of the differential equation and is as close as possible to this solution.
This leads us to consider the following values of a3 and axs:

o] = q, O£2=0 lfTSp,
2p—1— —
=—%—_—T—r-a, a2=r_[1)a fp<r<2p-1,

p
a1 =0, ag =« ifr >2p—1.

(32) (5}

Lemma 3.1. If the solution v, is positive on Q, v, € H(Q) N C<(Q), (¢ €]0,1])
and satisfies

(3.3) a2 =1

At|lvg||o? < 1 in the case T > p,

then the problem (3.1) has a mazimal nonnegative solution ¥ € H(2) N C%(Q).
Besides every nonnegative solution v satisfies 0 < v < T.

Proof. The problem (3.1) may be written as Avp+1 = f(vn41), where f is the
function defined by

(3.4)

_ p p—1 r—p\ -1, _ (1_ . P=1 r—p )\ P
f(u)~(p_1)At Kl+a1 . Atuy, )vn u (1 o — Atvl 7P ) uP |

where f satisfies f(0) = 0.

In addition, if (3.3) is satisfied, (3.1) has a constant supersolution C,, such that

-1 — -1
lonlls " + a1 5% Atllun|lg

1 — 0 Z2L Ao 57

(3.5) crl =

Hence we deduce from a result from Amann [1] that (3.1) has a minimal solution
(the null solution) and a maximal solution ¥ € C2(2). Besides any solution satisfies
veC?Q)and 0 <v <.

Lemma 3.2. Under the hypothesis of the previous lemma, (3.1) has at most one
positive solution.

The proof is the same as in [8].
In order to set up a sufficient condition for the solution of the numerical sheme
to be positive, we introduce the functional F', which is defined by

(3.6)
1

= 2
el

F(p)

[ (196l —arg)da, vioe HY@) 0 17 (@),
Q

Lemma 3.3. Under the hypothesis of the Lemma 3.1 and if v, satisfies

1

p—1 -
(3.7 5 AtF(vn) < |lonllpis

then (3.1) has a positive solution in HZ(2) N C%(Q).
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Proof. Let us introduce the set K and the functional J,, on H}(Q)

(3.8) K= {v € Hg(n)//Q (1 PN 1Atv;"’) v|PT de = 1},

(3.9)
= szdx——p—/v£_1(1+ap_
J vt - g, :

and let us consider the minimization problem ¢, € K, J,(v,) = mi}r{l Jn(v). By
ve

L Atv;_p) vidz,

using a Holder inequality, we easily set

p+1

P (1 + alp—;—l Atvfl_p) =

Jn(U) > —(_—1&— / ’U,£+1 5 d.’IJ, Vv € K.
p— 1At Jo e\ =T

(1 — az—At’Un p)

Hence, J, has a lower bound on K.

Let ¢, x be a minimizing sequence; since J,(|¢0nk|) = J(¢n k), We may suppose
©n,k>0- This sequence is bounded in Hg (£2), so we can extract a subsequence, again
labeled ¢, x, which converges to ¢, weakly in H}(Q) and strongly in LPT1(Q).
Hence we have ¢, > 0, ¢, € K and for all v € H}(Q), we obtain

(3.10)

[P p-1 r—1 _ B p—1 r—p »
Apn (( = l)Atvn + ayv, )wn = Jn(¢n) (i ap Aty ) b,

Then, if J,,(¢n) < 0, the solution v,41 of the problem (3.1) is defined by
1

—1 p—1
(3.11) 1M+1=:(—9?7—AuLA¢0) On.

It remains to determine a sufficient condition for J,(¢,) < 0.
Since the function ¥, = ([, (VBT — @ %Atvﬁl)dm)_ﬁllvn belongs to K, we
necessarily have J,,(¢n) < J, (), where

(3.12)
) = Vol (Flom) - =B lonlzs?)

_ 2
x(/ (vpﬂ—agp;lA r+1>daz> m.
a\” p

Hence if J, (%) < 0, namely if 2= 1AtF(vn) < ||vn||p+1, then we obtain J,,(¢,) < 0
and (3.1) admits one positive solutlon

Now we prove that the numerical solution is bounded by one of the differential
equations (2.8), as it is true for the exact solution.

Lemma 3.4. If the parameters a; and ag are chosen as in (3.2) and if the hy-
potheses of Lemmas 3.1 and 3.3 are satisfied, we have the inequality
1

r—p p=r .
] if r#p,

(313 foal, < ||vo||oo(1 +aP
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-
(3.14) onllos < llvolloo xp (*tn).

Proof. We denote by w,, the solution of the differential equation (2.8) at the time
level t,, = nAt,

1
_ p—r 2
Wy, = Wo 1+aTAtw0 ifr #p,
«a
Wp, = Wo €XP (— tn),
p

and we prove the lemma recurrently: the result is true for n = 0 since w(0) = ||vo]|co-
Then wp+1 is a supersolution of (3.1) if f(wp4+1) < 0; namely

1 -1
Atv;_”) <whiy (1 —a? Atv;_”) ,
p

vP1 (1 + ol
that is
-1
vE ! (1 + oqp ’ Atv,’;_p>

II-;’_
—7r —T —_
< P! (1 + apTAtw;—P) (1 —

lAtU;_p) ifr#p
and
vP1 (1 P At) < wP lexp (MAt> if r=p.
p p

As ||vnloo < wh, in the case r = p, the above inequality is immediately verified and
in the case r # p it will be true if

(3.15)

—

p—

—1 _ p—r
Atw,’;—P> (1 + a’%mwg—?>

Let us prove that this last inequality holds if oy and «aq are chosen as in (3 2). For
this, we consider the mapping h: z — (1 — azz)(1 + a ) where p = p r,r # p.

This function is defined for z > 0 if » < p and for —a% < 1 if r > p. Moreover it is
easy to check that h”/(x) > 0Vz € [0, Z%[. So we have the inequality h(0)+xzh’(0) <
h(z). In particular, for z = %Atwg_p, we obtain the inequality (3.15). We deduce
lvn+1lloc < Wn41, which achieves the proof.

-1
1+ alp Atw, P < (1 — agp

Computation of the positive solution of the numerical scheme. Equation
(3.1) may be written as
Avny1 = f(vpt1),
where f is the function defined in (3.4).
In order to compute a numerical solution of (3.1); we use a result of Keller [7].
The function f satisfies the inequality f(v) — f(u) > —m(v — u), where m is the

function defined on Q2 by
(3.16)
-1 r— —1 b— 1 r—
Atvp P — ol 14+ oy s Atv, P

_ p p—1 _ p
™ - DA (”C" (1 o
with C), defined in (3.5).
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So if we define the sequence (vp41,5);>0 by

(3.17) (A+mD)vny1j41 = f(Vnt1,5) + MUnt
or
(3.18)

-1 — _ _
(A+mDvpqr 41 = m (1 — angAtvn p) (pCﬁ L vﬁﬁ,j)vn_,_lyj,

we obtain a monotone sequence if the first iterate is a subsolution or a supersolution;
it is the choice of v,41,0 that determines whether the sequence is decreasing or
increasing. This sequence converges to the solution. For example, we can choose
Un+1,0 = Cp, since Cy, is a supersolution and the sequence (vn+1,;);>0 is a decreasing
sequence converging to v, 41.

If » > p, the constant C, may be very large when ¢, is close to T7. So we
shall prove that in this case we again obtain a convergent sequence (vp41,;);>0 by
choosing vn4+1,0 = V.-

In order to prove this result, we need the following lemma.

Lemma 3.5. Forn > 1, we have the inequality

1
(3.10) - 2+O&1——“Atl|’l}n”r P\ P1T TS
. Upp1 < v, ifr> p.
M C =T T P

Proof. Let 7 > 1; the function 77 Tv, will be a supersolution of (3.1) if

D p—1 p—1 i
> & P T _ D 7
Av,, > b= 1AL ((vn + oy Atvn) T (v? oo P Atvn)> ,

1 . 1,
Atv,’;_’{)vn - (1 —al Atvn_’i>vﬁ>,

1) +;V5. Then for n > 1, the inequality will hold if

but

_ p p—
o= o (% (”"‘1

which implies Av,, > —

(7:}21—)‘& (T — 2)’[}71.2 2 041’077.; + TCYQU:;,
which will be true if
2+ al—AtanHr P
>

T l-as plAtanHoo

Theorem 3.6. If r > p and vp41,0 = va(n > 1), the sequence (Vny1,5)j>0 con-
verges uniformly to vpy1.

Proof. Let us consider the sequences (w;);>0, (2j);>0 obtained from (3.18) with the
following respective initial values:

1
l—ag——AtanHT P\ p-1 c
wWo = P v , k0= .
*T\ 2+ B Aol s "

The following inequalities hold: wp < v, < zp (see (3.19)). Since the operator
(A +mlI) is monotone and the mapping v — f(u) + mu is increasing, we deduce
that wy S Un+1,j S Zj.
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Besides, since wy is a subsolution of (3.1), the sequence (w;);>0 is a monotone
increasing sequence converging uniformly to v,+1. In the same way, since zg is
a supersolution of (3.1), the sequence (z;),;>0 is a monotone decreasing sequence
converging uniformly to v,41. Therefore, the sequence (w;);>o converges uniformly
to Un+1-

Remark 3.7. We also observe that the sequence (vp41,5);>0 converges more rapidly
by taking v,41,0 = vp, in the case r < p.

4. PROPERTIES OF THE NUMERICAL SOLUTION

In this part, we check that the numerical solution has the same properties as
the exact solution. We prove that the solution of the numerical scheme exists
and remains positive during at least a finite lapse of time and we obtain sufficient
conditions for this solution to become infinite or null in a finite time.

Lemma 4.1. For n > 0, we have the inequality

(4.1)
p—1 1 _
ol L(Wwﬂf—%%pﬁﬂ—awrwﬁﬂm
n+1llp41
< Noallpr = llonsr b3

Proof. By multiplying equation (3.1) by v,y1 and integrating on Q, we get
pf 1/ Vi (vﬁ;} - vﬁ_l)d:c + At/Q |VUnt1|*dz

=At<a1/ vl ,%+1dm+az/ v ”vﬁﬂdm)
Q Q

Besides, we have the inequality

1
[ ot (7 =02 2 ol (ol Ionl23).
We deduce the result.

Lemma 4.2. For n > 0, we have the inequalities.

Ifr <p,
(4.2)
ol = o} < P At [ (190" - 0o} ) da.
p ””n||p+1
Ifr > p,
(4.3)

+1
||Un||£+1 ”vn+1“p+1

1 -1
p:; At(/@ (len|2 _a’v;:'i‘l)dx—l—agi_'_1/91}2_1’(1}24-1 zii)dx)




NUMERICAL SOLUTION OF A FAST DIFFUSION EQUATION
Proof. From Lemma 3.3, the solution of (3.1) is written as
p—1 =
Unt1 = (_ "’p_AtJn(‘Pn)> Prn-
Moreover, the function ¢, as an element of K satisfies

/Q(l—agp_

With both the previous arguments, we obtain

(65

Besides, from (3.12) we get

Jn(pn) < Jn(vn) (/Q (1 —a2=

and we obtain

_p;lAtJn(vn) < (/ (1 — a2
p Q p
_ b
X (/ (1—a2p 1Atv;_”)vﬁﬂdx>p .
Q p

If r < p, then az = 0 and we get

b—
_TAtJ n(Un) < ||”n||p+1||vn+1”p+1’

1
Atv;-p) WP ldy = 1.

b1 _
1Atv;_p)vﬁiid )p = ——]Z—p—lAtJn(gon).

2

1 p+1
Atvff”) v,’i“dx) ,

2
p+1

! Aty P ) e 1dm>
(4.4)

since

_ 2 _ oty g, p p+l
To(w) = [ (V0 = ao e = L vnlB,

we deduce (4.2).
If » > p, then as > 0 and by using the Young inequality, we get

_f%lAtJn(vn) < L/ (1 W

1 p—
+22 [ (1-a
p+1/a ( 2

and by using the definition of J,, we obtain

p—1 r 1
___p_At/Q (1Veal? — anv*)do < p—( ol + llom 1 l1254)

1 2 1- .
_pTAtaQ/Q (mvﬁ"'l p+1 gii) ’U; Pdx,

which gives the result.

1
Atv;_p) vy

1 _ 1
AtvT P) vPtlda,

Lemma 4.3. Forn > 0, we have

(4.5) / 020 s1 — o) 2dz < 21’; L AT (0n) = T (0n1n).
Q

473
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Proof. From the following inequality shown in [8],
a?7 (b —a)? < aPtt — Pl 4 p—l—i (P~ —aP™ 1),

we deduce that

_ 2 +1 41, p+1
/Q 0 o = vn)’de < o253 = o) + 22

-1
1 n+1 (vn+1 /U7I‘JL )d.’IJ
Q

Besides, we have
2 p—1 p—1
/Qvn+1(vn+1 R

-1
= %At(—/ (|an_|_1|2 —a1v2 ol — Pt lun p)dx).
Q

Therefore, the previous inequality becomes
+1
/va H(Ung1 — ”n) dz < ””n| p+]_ ||vn+1||§+1

+ 1 T— r—
+2 ) At( / (IVvpi1]? — @12, on ! — Bt ol p)d:c).
Q

If r < p, we have the inequality

1 1_pt1
onllP31 = v llB] < ||”n||p+1(||”n||p+1 [vnt1l251),
b—

and from (4.2), we get
+1
||”n||§i} - ||”n+1||§ﬂ <P At/(IVv |2 — avrtt)dz.

If r > p, we use the inequality (4.3) directly and we obtain r >pand r <p

|
/”ﬁ_l(”nﬂ—vn) do<PXon t/ (19002 — ay*) d
Q p Q
-1
b et

1
p—}l)— At/ (|an+1| — a2 ot —agvnﬁvr ”) dx.

+a2p

By using the Young inequality, we easily prove that
Jo na = 0a)? do < 222N (I 00) = T (0mi)
Q

and we deduce that the sequence (J*(vy,))n>0 is nonincreasing.
Now we state an existence theorem concerning the positive solution of the nu-
merical scheme.

Theorem 4.4. In the case r < p, if J*(vg) < 0, then (3.1) has for n > 0 a positive
solution v,y € HY(Q) N C3(Q). If J*(vo) > 0, then this problem has a positive
solution at least until the time Te, defined in (2.22); this solution can become null
after this time.
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Proof. For n > 0, (3.1) has a maximal solution. We prove that this solution is
positive and then unique during a nonempty lapse of time. From (4.2), we have

1_p+1
(4.6) ””n||p+1 ”vn+1||zi1 < ——Atlv n||p+1F(”n)
and F(vn)|[von 31 < 2J%(vn) — amllvnllfﬁ

Since the sequence (J*(vn))n>0 is decreasing, we get F(vn)|lvnll2,; < 2J*(vo)
and we deduce

1_op+1 o, 1
(4.7) ||U0“§il -2 » J*(vo)tnt1 < ||vn+1||£I1'

So, if J*(vo) < 0, the solution (vy)n>0 is positive for any n > 0, and if J*(vo) is
positive, it is positive at least until the time T,
We deduce from Lemma 3.4 that this solution is always bounded.

Theorem 4.5. In the case r > p, if J*(vg) < 0, then (3.1) has a positive solution
forn >0 at least until the time T1 defined in (2.6).

If J*(vo) > 0, (3.1) has a positive solution during a nonempty lapse of time; this
solution may become null only after the time T, , or blow up only after the time T1.

Proof. In this case, from Lemma 3.4, (3.1) has a bounded solution at least until
the time T3 and from the inequality (4.3), we get

+1 +1
lvallpry = llvntallpi

p+1 r—1 r—1. p—1 / 1
A * _ " r+
» t(J (vn) (a1r+1 +a2(r+1 p+1>) Qvn dz
_1At/ vy Pvﬁiidw,

and again we obtain

— Qg

loallZ5} = o |24 < 22— LA ().
Then the inequality (4.7) holds and we conclude as in the previous theorem.
Theorem 4.6. If r < p and J*(vy) < 0, then ninioo lonllp+1 = +o00, (except in
the case r =1 and J*(vg) = 0).
The proof of this theorem is analogous to the proof of Theorem 2.4.

Theorem 4.7. Ifr > p and J*(vo) < 0, then the solution of the numerical scheme
blows up in a finite time Ty such that

(4.8) Ty <Ty <Tj withTy>T, defined in (2.15).

Proof. According to the definition of J,, in Lemma 3.3, we have
-1 -1
pTAtJn(vn) = —|loal5¥1 + p——At<2J*(vn) + ( o = —a) I nll:ﬂ)

Since the sequence (J*(vy,))n>0 is decreasing, if J*(vg) < 0, then we get J*(v,,) <0
hence

p+1 r—1
@9 ol + (Fje-an)

r p_l
mmmﬁ_—7rmhm»
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From the inequality (4.4) we have
(4.10)

—1 o —
_pTAtJn(vn) < ||vn+1||§+}(/ (1 — a2p
Q

Therefore, by using this estimate in (4.9), we obtain

+1 p—1
ol + ( ) TAtnm il

2
)p+T

1 .
Atv;_”) Pz

-1
+1

sh
'r+1) P+ )
)

-1
< ””n+1”5+1'

1
< o 25 (n v P

hence we get

1A llonllyd
(r+1a a )p At ;i}

llonllzia

2
r+1
(1 A ||vn||;ﬂ) +1

||Un||p+1

””n||p+1

Besides, by taking into account the inequality (1 —qz) ! < (1—-2)"7(0<q <1,
0 < z < 1) and using a Holder inequality, we deduce that

(4.11)
L+ (e —as) B At Mool

vall?s 1
P 1= e B ALC () lonlly

= ||”n+1”p+1
p+1

In order to simplify the notations, let us denote
2 p—

=0 0202(Q)a
_(r—1 p—1
B = (H_la az)02(9)77
p—1
5= C(Q) s 2n = ||vnll pyr-

It is easy to verify that the quantity (v + ) is positive. From (4.11), the sequence
(2n)n>0 is increasing and satisfies

r—1
2 1
n p— _Zp 1.

— <z
1 — Atz P — it
Otherwise, for a,b > 0, we have the inequality (see [14])

(v+ B)At

(4.12) T S et b (@ — b,
T—p
Hence we obtain
r—1,1-r
r—p AN ) -
o1 (v+ ﬂ)Atl—jfy—_—A:—zf; <z -

namely,

r—1

r—p
r—p Zn Zn — —r
At — At < 2P — 2P0
g +(('y+ﬁ)p_1 <2n+1) v(an) ) Szt = Znq
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Let us consider the function f :  — (y + f)
inequality is written

r—p r—1 r— :
g — ~vz"~P. The previous

Zn

(4.13) yAt + f( JAL < 2P — 2P

Zn41

The function f achieves its minimum at the point 2o such that 25 " = 2=1 15 and

r—1+
is decreasing on the interval [0, zo], then we shall use the estimates, f (zz:: -) > f(1)
if o > 1, and f(ﬁi—l) > f(xo) if zop < 1.
If o < 1, we obtain yT=LAt < 287" — 20 1 if zo > 1, we get (v + B)EAL <

p—r __ PT
Zn Zn+1 .

It remains to know the sign of (z¢ — 1) according to r and p. Let rg € [p,2p — 1]
be the unique root of the equation (rg + 1)® = 2(p + 1)(r2 + 1). We easily get the
following results.

o If p <r <rgy, then ¢ < 1 and we obtain
r— r— T;
(1.14) lonll st > ool (7 )
2 n

with T = %’%%—;%TQ; we conclude as in Theorem 2.4.

e If g < r < 2p—1, then o > 1 and the inequality (4.14) holds with T} =
(r=1)(p+1) 7
P1-(rp)? 2

eIf2p—1 < r < p+ p?>—1, then zop > 1 and (4.14) holds with T} =

(r=1)(p+1)
2(r—p) Ts.

o If r >p++/p?—1, then zg < 1 and (4.14) holds with T3 = %TQ.

Thus we obtain an upper bound on the blow up time according the values of r
and p and we can check that 7% > T, in all cases.

Remark 4.8. The difference between the times T5 and T4 proceeds from the upper
bound of the second member of the inequality (4.4) we used to obtain (4.10).

‘We now set up a sufficient condition on the initial data for the numerical solution
to vanish in a finite time.

Theorem 4.9. If r < p and if vy satisfies (2.20), then the solution of (3.1) van-
ishes in a finite time T such that T,, < T} <T,, with T, defined in (2.22).

The proof of this theorem is analogous to that of Theorem 2.5.

Theorem 4.10. If p <r < 2p —1 and if vy satisfies

r—1 —1 T— b— 1 r—
- T lollpallvollss™ < (1 o llvollsc ™At | C(9),

(4.15) o

then the solution of (3.1) wanishes in a finite time T; such that Te, < T, < T..
And, if there exists a positive constant 61 such that

(4.16) as

1, . B
oIz llvolly oy < C)(L = 61),

then we have the estimate T,, — T, = O(At) with T,, defined in (2.27).

€3
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Proof. The inequality (4.1) may be written as

IIvn+1llp+1 [
-1 1

2
p ”vn+1||p+1
X (—/ |an+1|2dx—|—a2/ v pvﬁﬂd:c+a1/ vrt i+1dx)
Q Q Q
and by using the Sobolev constant C(Q2) we easily get
lons1lipry = lonllsy

1 r— r—
< AP (-0(@) + aaljonl P o} + e P 251

T—p
oo

L adjunl;? ) - 2L avo(@),

namely

—1
o |2 (1 —

< ||Un”p+1 <1 + a1

From Lemma 3.4, we have [|v,[|757 < 25 ||vo||757; that is, [lu,[|5o? < 725 L 72
Hence we obtain

azp—1 1
||vn+1||p+1 (1 T ar— AtT1 - tn)

] p— 1 1

p—1
< — .
IIvn||p+1(1+ o AT _tn> —AIC(@)

By using the notations C; = 1’;—10(9) and p = %, the previous inequality be-
comes

(4.17)
[ Lo <T1 ity — —um) < ||vn||p+1( —t,+ —pAt) — AtOy(Ty — t).
In the case r < 2p — 1, we have 2 = ﬁ and 2L = £—, and by multiplying (4.17)

by (T} — tp41)* "1, we obtain
(T - tn+1)ﬂl|vn+1“§;i

(4.18) < JlonlPr(Th — tn + (1 — DAL)(Ty — togr)*

— AtC(Ty — tn)(T1 — ty1)*™
Since p > 1, we get (Th —tp, + (1 — 1)AL)(Ty — tpg1)* 1 < (Th —t,)* and we obtain

lvn g1 251 (T2 = tngn)* < llonl20y (T1 = tn)* = CLAK(TY — )(T1 — tnga)*
which implies
n
ont1 257 (T1 = taga)® < lwol 20T = CLAEY  (Ty — ) (T1 — tj50)
7=0

Since the mapping t — (T3 — ¢t + At)(T1 — t)*~! is decreasing, we have

tny2

ALY (Ty = 6;)(Th — tj0)" ' > / (T — s+ At)(Ty — s)* " 'ds,
j=0 At
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that is

n

ALY (T —1;) (T =t )" "

7=0
1 At At
>~ ((m T+ 20 (-, T =t + 20 ).
p+1 ((1 )<1+u) @ +2)<1 +1+u>)

Hence we obtain

-1
[Vt ”24-1 (T1 = tns1)"

C At
< It - - - anr(n+ 2

C, At
T —t, Ty =t + =
+ +1(1 +2)<1 +1+#)
If vg satisfies
Cy At
4. — =
(4.19) ol < - (7 - Ay <T1+ “)

then the right side of this inequality will be null for ¢,,; = T,  such that
A
(T1 T, + ft) (T - T, — A)*
=@ - 2 (14 5 - iy

At
= (T} — At)* <T1 + 7) — T (T - T, )Mt

Since T, is bounded, we deduce easily that (T —Te,)* ' —(T1 T}, )**! = O(At),
which gives Te., — T,, = O(At) if the quantity (T — Te,) is greater than a positive
real § (independent of At). Then, as (T — Tp,)*+! = TH+!(1 - ) the estimate
holds if there exists §; > 0 such that —’i <1-6;orif vy satlsﬁes (4.16).

Besides, as (T1 — At (T1 + %) > T“(Tl pAt), the inequality (4.19) holds if

”v0”p+1 < #C_;_ll( — pAt); namely
o -
— oollzs Plloollbr < (1—aTAt||v oll72P)C(Q).

The lower bound T¢, of the extinction time proceeds from Theorem 4.4.

Theorem 4.11. Ifr > 2p — 1 and if vy satisfies (2.25), then the solution of the
numerical scheme vanishes in a finite time T such that T,, < T} <T,.

Proof. In this case, we have a; = 0 and as = «; then by multiplying the inequality
(4.17) by (Ty — t,)*~ 1, we obtain

o2 H (T~ = BAO(T: — £0)*7 < o [E3 () — )" — ACY(Ts — )"
Since the inequality
(Tl - tn - /«’/At)(Tl - tn)u_l 2 (Tl - tn+1)”7
holds, we get
[Vt 11233 (T1 = tag1)” < [lonlP7) (Th — ta)* — CLAK(TY — t)",
p p+
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which implies

(4.20) lons1llpiy < THlleollpry — C1AEY (Ty = 1;)"
7=0
But,
A I e 2 1 pt+1 B+l
— > — = — - .
tz_; Ty —t)) / (T; = 8)ds = - (T — (Tt — tas1) )
From this estimate and (4.20), we obtain
01T1 T{L Cl
n Ty —tn).
fonlzt < (ionlzet - 22) A 4 S

If [Jvollby < 21+T11 , then the right side of this inequality becomes null at ¢, = T,.

Thus the solution vanishes in a finite time T, < T, and from Theorem 4.4 such
that T,, <T7.

In the particular case r = 1 we obtain the following results analogous to the
theoretical case (see [14]).

e If o < A1, the numerical solution vanishes after a time T such that

. p A llvollBis
<Tr<
Tey = CTp—-1l—-a C()

e If « = \;, the numerical solution converges in LP*1() to fp; with

oo < ( [ vhonde)”.

o If @ > Ay, then lim |jv,]/p+1 = +oo.
n—s-+oo

In the particular case r = p we have the following inequalities (see [11]):
P A6 () < (14 0P LAt fonll = o 7} < P MG,

Since the sequence (G(vn))n>0 is decreasing, we obtain

etz = (1 a2>La0) " (jonigyd - €02 4 C0)

(67

p—1 " G(vy) G(vn)
||vn||p+1_(1+a7At) (ronlz} - S0 4 E)

Therefore, if vy satisfies o vol[5 +1 < C(9), there exists a time T, = NAt such that
the solution of the numerical scheme becomes null and we have

)N cE©)
C(Q) — allwollhyr

and

—1
(1+ap—At
P

o If vy satisfies a||v0||p+1>G(vo) then nin_il_oo lvnllp+1 = +oo.
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5. CONVERGENCE OF THE NUMERICAL SCHEME

Let TX;be the time existence of the numerical solution. We define a piecewise
linear approximation ua; of the weak solution u of (1.1) by

t—1tn,

(5.1) uag=vE + N, (VP —vB) Vi€ [tn,tnta], t <TAr,
and we denote T* = 0c Ai?ifm0 TA (T > Ty).

Let T < T*. Here we prove that the solution of the numerical scheme converges
to the weak solution of (1.1) on the interval [0, T].
We need the following two lemmas.

Lemma 5.1. Ifvy € H}(Q)NC(Q), (e €]0, 1[), then there exists a positive constant
C depending on Q, a,p,r such that

5.2
( N) -

Z/ Vnt1 (Vg1 — V) (0551 — 2 Nde < ——= AL + CAL)(J* (v0) — J* (vn)).-
n=0 Q p

Proof. By multiplying (3.1) by (v,+1 — v,) and integrating on Q we get
(5.3)

p - _
(p— )AL /Q”n+1(”n+1 - vn)(”ﬁﬁ —vb)dx

1
= [——/ |an+1[2d:c+l/ |an|2dm—|—a/v;(vn+1 ~vn)dx}
2 Ja 2 Ja Q
1 2
+ == [ |V(vpy1 —vp)|  dx
2 Ja
by [ 0P (ot =) (s — )
Q

+a1/ T (pg 1 — vn)Qd:c] .
Q

By using the Young inequality, we have
@ 1 1
o [ v = w)de < =2 (fomsa 7 = ol
Q T + 1
hence

(5.4)
1 1
—5/0 Vo412 da + 5/9 |V, |*de +a/Q V) (Vnp1 — vn)dz < J*(vn) — I (Un41).

Besides, we have

1
(55) —5/ |V(Un+1 — ’Un)|2dx < —%/ (yn+1 - 'Un)2d(12-
Q Q

If r < p, then @; = @ and ap = 0 and the second part of the second member of
(5.3) may be bounded by

(5.6) / (av;_l - -)\2—1) (Vg1 — vn) da.
Q
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Let us denote Q4 = {z € Q/v~}(z) > 31}; so the quantity (5.6) may be bounded

by
=
/ avffl(vnﬂ - Un)de < a(?ﬁ) / vﬁ—l(vn+1 — vn)Qd:c,
Q4 A Q

1

and from Lemma 4.3, we obtain

(5.7) /Q [avfl_l - %] (Vg1 — vn)2dz < CALT* (0n) — J*(Vny1))

; — 94 Ptl2a\E=7
with C' = 20242 (32) 7=

If » > p, then we denote M = sup,a;<r ||vnll, and the second part of the
second member of (5.3) is bounded by

(5.8) / (a1M’”_pvﬁ_1 + appMP 1yl TP — %)(vnﬂ - vn)2dm.
Q
If we denote Q4 = {x € Q/aspMP~ 1ol 7P > %}, then this quantity is bounded by
/ (a1 M™ P21 + agpMP 0] 7P) (Vg1 — v, dz.
Qyp

- 2p—r—1
If r < 2p — 1, then we have the estimate v;,? < (”ﬂp)\]\f—p—l) —7» vP~! on 0, and

if 7 > 2p — 1, then we have the estimate v, P < M"~?P~192~1. So in these two
cases, we obtain

A
/ (alM’_pv;_p + aogpMP 1yl 7P — —Zi) (V1 — vn)2da
Q

< Cl/ b (Vg1 — von)?dz
Q

2apMP~1\2p=r=1

with C; = Max(ay M"™ P + agpMP_l(——%—) ~p ,a1 M"TP 4+ appM"P).
By using Lemma 4.3 we deduce that

(5.9)
/ (aer_Pvfl_p + appMP~ 1yl 7P — %) (Vnt1 — vp)2de
Q
< 21”—;—101At(J* (1n) = J* (Uns1))-

Then from the inequalities (5.3), (5.4), (5.7), (5.9), we obtain the lemma.

Lemma 5.2. If NAt < T, then there exists a positive constant C(p) independent
of the initial condition such that

(5.10)
N
>,

p _.p__P p—1 _  p—1
Unt1 = Un p—1 Un+1 (’Un_,_l U, dx

—P_

< CALFT (J*(v0) — J* (vy)) 75T .
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Proof. We recall a result shown in [10]: there a positive constant C(p) such that

>

n=0

dz

-1 —
vn+1(”ﬁ+1 - 1)

p
U£+1—”ﬁ—p_1

N T
< C(P)N# (Z/Q'Un+1('un+1 - Un)(vfz:-i - ”g_l)dx>
n=0

N P
+ (Z [ ot s - vn)2dm)
n=0 Q

With Lemmas 5.1 and 4.3, the right side of this inequality is bounded by
1 =
C’(p)Npl? [(p—p—At(l + CAt)(J*(vo) — J*(UN)))
+1 7T
+ (27’7At(J*(vo) —~ J*(UN))) }

s0, for NAt < T, by CALST (J*(ve) — J*(un)) 757

Theorem 5.3. The function ua; converges when At tends to 0, to the weak solu-
tion of problem (1.1) in C(0,T; L*(Q)).

Proof. The function ua; is bounded in C(0,T;L*(€)) from Lemma 3.4 and in
C(0,T; H}(52)). Besides, in the same manner as in [10], we obtain that £ua; €
L?(0,T; L'(2)). Hence, there exists a subsequence, again labeled ua;, such that
ua¢ converges to some function u in C(0,T; LY(R)) with ¢ < 2% if d > 2, ¢ < 00
ifd=2andin C(0,T;9Q)if d=1 ([19]).

It remains to prove that u is a weak solution of problem (1.1). Let ¢ be a test
function in C?(Q x (0,T)) N C(Q x [0,T)); p(z,t) = 0 for x € HQ.

Multiplying the equality (3.1) by ¢ and integrating on Q, we get

p -1 -
/QpTlvnH ('U£+1 — vy, 1)godm
+ At/ (Un414¢@ — a1vpi1v, "t — vl v) " Np)da = 0
Q

hence, for T' = NAt we get

(5.11)
N-1 t
1 n+1 _ _
Sz [ S pren i - o pdds
n=0 n

N—-1 tnt1
+ Z / /ﬂ (Un414¢ — QU410 Lo — aovl vl p)dzdt = 0.
tn

n=0
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The first term of this equality may be written as

S
OAt tn Q p_]'

i (07 =) =l 4o} ) e

Trd
+/ /——uA pdxdt.
o Jodt o

From (5.10) the first part of this equality tends to zero when At — 0 and the
second part tends to

(5.12)
/ /uidwdt+/ (w,T)go(m,T)dm—/Quo(m)go(m,O)dm.

We prove in a classical manner ([14]) that the second term of (5.11) when At — 0
tends to

T 1 T
(5.13) / / (uﬁ Ap — aufgo)dmdt.
0o Ja

So u satisfies the equation

/ /u—¢dwdt+/OT/Q(u%Ago—auIT_’go)dwdt
:/uo(x)go(m,O)dm—/u(x,T)go(m,T)dm
Q Q

and is a weak solution of (1.1)
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